

An Intelligent Nature-Inspired Load Balancing

Framework for Fog-Cloud Environments

1st Aishwarya Nayak

Department of Computer Science &

Engineering

DRIEMS University

Cuttack, 754022, India
aishwaryanayak22@gmail.com

2nd Subhranshu Sekhar Tripathy

School of Computer Engineering

KIIT Deemed to be University

Bhubaneswar, 751024, India

subhranshu.008@gmail.com

4th Biswajit Tripathy

Departmenet of Computer Science

Ravenshaw University

Cuttack, 75303, India

biswajittripathy1998@gmail.com

3rd Sujit Bebortta

Department of Computer Science

Ravenshaw University

Cuttack, 753003, India

sujitbebortta1@gmail.com

Abstract—In this work, a Particle Swarm Optimization

(PSO)-based method for load balancing in cloud-fog systems is

presented, which tackles the dynamic and distributed settings'

resource management issues. Effective load balancing

techniques are required due to the complex interactions between

fog and cloud computing in order to maximize resource usage

and improve system performance. In order to reduce processing

delays and boost overall system performance, the suggested

PSO-based load balancing architecture makes use of the swarm

intelligence concept to dynamically distribute jobs among fog

nodes and the cloud. The efficiency of the PSO algorithm in

reaching load equilibrium is shown by comprehensive

simulations and performance assessments, highlighting its

flexibility to changing workloads. Comparing the PSO-based

load balancing strategy to conventional methods, the results

show a considerable improvement in response times and

resource utilization. Moreover, the PSO algorithm's distributed

structure and scalability make it ideal for cloud-fog systems,

where centralized management might not be feasible. This study

adds to the current conversation on maximizing the benefits of

fog and cloud computing in concert and provides a workable

answer to load balancing problems in dynamic, heterogeneous

environments.

Keywords—Load balancing, Cloud Computing, Fog

Computing, Nature-Inspired Optimization, Optimal Resource

Utilization

I. INTRODUCTION

Several intelligent systems have emerged as a result of the
Internet of Things (IoT), which is powered by the smooth
gathering of environmental data via sensors and actuators.
IoT-enabled devices include everything from watches,
computers, and cellphones to bigger equipment like
refrigerators and washing machines, as well as whole houses
and vehicles. These gadgets produce data on the energy they
use and consume, separating private information that is only
available to the user from public information that controls the
amount of electricity used overall. For example, a homeowner
can monitor the energy use of particular appliances, such as
TVs, refrigerators, fans, and air conditioners, by accessing
private data.

Smart devices that rely on the IoT face difficulties with
storage, network capacity, and latency—complexities that
cloud computing may not be able to resolve on its own.

Therefore, fog computing has been introduced to supplement
cloud servers in order to overcome these issues. This becomes
more important when it comes to load balancing in cloud-fog
environments, because the way computational activities are
divided across cloud and fog nodes is critical to maximizing
system responsiveness and efficiency.

A. Cloud Computing

The cloud environment is a dynamic computing environment

made up of physical machines (PM) and virtual machines

(VM), providing customers with optimal use of

computational and storage resources. In today's world, the

smart grid appears as a driver of both economic and

environmental advantages, using digital marketing and

monitoring to reduce power costs in smart cities and

communities. The rising demand for energy has fueled cloud

computing's rise in popularity, especially in major industries

where it effectively satisfies customer needs and requests.

In order to optimize the complexity of cloud operations, fog

computing deliberately interjects services between end nodes

and cloud servers. This becomes especially important when

it comes to load balancing in Cloud-Fog situations, where

efficiency is improved by the inclusion of game theory. As a

model for providing internet-based services that include

servers, databases, storage, and software, cloud computing is

a fundamental component of modern technology. Even with

its quick uptake, problems like traffic jams occur when

several clients seek resources at once. 'CISCO's' introduction

of the fog concept in 2014 is an attempt to address these

constraints and enable more effective load balancing within

the Cloud-Fog environment.

B. Fog Computing

By serving as an intermediary between customers and the

cloud, fog computing intentionally lowers latency and

storage needs in comparison to more extensive cloud

infrastructure. Because of this feature, fog is a preferred

alternative for a lot of customers, which encourages

individual fog adoption within societies to improve

performance and dependability. Clients use cloud and fog

environments to accomplish numerous tasks using virtual and

physical devices. Fog computing is used to minimize latency

and speed up customer requests.

mailto:biswajittripathy1998@gmail.com

The extant literature utilizes diverse service broker policies

and load balancing methods to maximize cloud and fog

system performance while concurrently reducing

computational expenses. Importantly, load balancing

algorithms heavily rely on service broker policies like RDL

(Reconfigure Dynamically with Load), ORT (Optimize RT),

and CDC (Closet Data Center). This framework's main goals

are to speed up response times and make sure the cloud server

is under a balanced load. This focus on load balancing is

especially important in the developing Cloud-Fog

environment, where the best possible system performance

depends on the effective distribution of computational

activities across fog and cloud resources.

Figure 1. The overview architecture for IoT-Fog-Cloud

infrastructure.

C. Motivations

Fog functions as an intermediary stratum synergizing with the

cloud to ameliorate load and processing time dynamics. The

intricate Fog environment necessitates the integration of

sophisticated load balancing algorithms, including nature-

inspired techniques like Particle Swarm Optimization (PSO),

Ant Colony Optimization (ACO), and Genetic Algorithms

(GA), along with diverse service broker policies. This

research is distinctly focused on deploying fog computing

within community networks, emphasizing its pivotal role in

addressing load and processing time challenges. The core

motivation lies in the exploration and implementation of

nature-inspired load balancing algorithms, such as PSO,

ACO, and GA, to adeptly manage and optimize the load on

the cloud server within the Cloud-Fog environment.

D. Contributions

The fundamental contributions of this article are outlined as

below:

 In order to effectively distribute computational

workloads and maximize resource usage inside

Cloud-Fog systems, the study presents and

implements the PSO-based load balancing

algorithm, a nature-inspired load balancing

technique.

 The research endeavors to optimize system

efficiency by employing the PSO algorithm to

dynamically manage workloads between fog nodes

and the cloud, ultimately reducing processing delays

and boosting overall performance.

 The study makes a contribution by concentrating on

the implementation of fog computing in community

networks, demonstrating the usefulness of PSO-

based load balancing in actual situations, especially

in settings where community-based cloud-fog

systems are essential.

 The main contributions include particular issues

with load, processing time, response time, and costs

in Cloud-Fog systems by utilizing the PSO-based

load balancing algorithm in conjunction with some

benchmark load balancing algorithms.

II. RELATED WORK

This section deals with a comprehensive survey of some

state-of-the-art studies which have implemented various load

balancing algorithms to enhance the QoS of Cloud-Fog

system. The Cloud Load Balancing (CLB) technique, which

is intended to efficiently balance the load over the Cloud, is

introduced by the authors in [1]. The CLB algorithm achieves

successful load balancing and higher performance as

compared to other methods. The results of a unique dynamic

service broker strategy for fog selection are compared with

those of the RR and Throttled load balancing algorithms in

[1]. A new Service Broker Policy for load balancing is

introduced in [2], and because of the policy's effective

resource selection (PT), response times (RT) and processing

times are shortened. Different approaches to load-balancing

are examined in [3], where RR, throttled, and evenly dispersed

current execution are contrasted. According to the study's

findings, RR produces better results in their particular

situation.

In [7], the authors use the Ant Colony System (MORA-ACS)

to address the problem of effective resource allocation.

Analytical comparisons with the RR algorithm for Energy

Consumption, Processing Time (PT), and standard deviation

show that the suggested algorithm achieves two goals:

reducing energy use and guaranteeing a balanced load in the

cloud. The work conducted by the authors in [4] uses

algorithms like honeybee, throttled, RR, and equally dispersed

current execution to offer a quantitative evaluation of load

balancing strategies. According to simulation results, through

processing time reduction and resource optimization, the

equally dispersed current execution load balancing technique

improves customer satisfaction. In order to reduce the

workload for consumers, the article [5] presents a three-layer

architecture that uses techniques such round-robin, throttled

load balancing, and shortest remaining time first, which are

selected in accordance with the broker policy and Closest Data

Center Service (CDCS). In order to mitigate VM overloads

brought on by intense IoT queries, load balancing at the fog

layer is crucial, as discussed in [6], which tackles the growing

user demand. By distributing the workload equally among all

VMs, load balancing solutions at the fog layer effectively

shorten response times.

To optimize load balancing in Cloud-Fog systems, a number

of techniques have been put forth and evaluated. Especially in

terms of allocating resources, accomplishing the twin goals of

reducing energy usage and guaranteeing a steady load on the

cloud. But among these options, the Particle Swarm

Optimization (PSO) method is the most promising one for

Cloud-Fog systems load balancing. Although the

aforementioned algorithms have their advantages, the PSO

algorithm stands out for its exceptional ability to effectively

handle computational tasks, maximize resource utilization,

and guarantee a fair workload distribution. As such, it is a

worthy candidate to handle the complexities of load balancing

in the Cloud-Fog environment.

III. PROPOSED FRAMEWORK

A number of Load Balancing (LB) algorithms that are
used to control energy consumption and maximize resource
usage are covered in this section. The three LB algorithms in
Cloud Analyst—Round Robin (RR), Throttled, and Particle
Swarm Optimization (PSO)—are thoroughly described in this
article. To reduce Response Time (RT) for requests,
Processing Time (PT) for data and transmission, and energy
costs related to Cloud-Fog offloading and data transfer from
service providers to customers, these algorithms are
strategically used in the context of Cloud-Fog systems.

A. Round Robin Algorithm

The Round Robin (RR) algorithm is implemented for

resource utilization on every host within the Cloud-Fog

system. This algorithm is specifically employed for load

balancing virtual machines, where, in the RR model, the data

center controller selects a virtual machine randomly from the

system panel after the initiation of the first request to fulfill

the request. Subsequently, the DC controller continues to

choose virtual machines randomly to address pending

requests, with the selected virtual machine automatically

being assigned to the top of the system panel. However, in

scenarios with high traffic requests, the system experiences

the drawback of nodes becoming overloaded, leading some

nodes to go out of service and negatively impacting the

overall system functionality [8].

Algorithm-1: Workflow for RR algorithm

1. def initialize_states():

2. % Set all VM states to VACANT

3. vm_states = {'VM1': 'VACANT', 'VM2': 'VACANT',

'VM3': 'VACANT', ...}

4. %Initialize the history matrix

5. history_matrix = []

6. return vm_states, history_matrix

7. def round_robin_load_distribution(vm_states,

history_matrix, user_request):

8. vacant_vm = None

9. for vm, state in vm_states.items():

10. if state == 'VACANT' and is_comparable(vm,

user_request):

a. vacant_vm = vm

b. break

11. if vacant_vm is None

12. vacant_vm = round_robin_selection(vm_states)

13. update_history_matrix(history_matrix, user_request,

vacant_vm)

14. update_vm_state(vm_states, vacant_vm)

15. def is_comparable(vm, user_request):

16. return True

17. def round_robin_selection(vm_states):

18. for vm in vm_states:

19. if vm_states[vm] == 'VACANT':

20. return vm

21. def update_history_matrix(history_matrix, user_request,

vm):

22. history_matrix.append({'user_request': user_request,

'allocated_vm': vm})

23. def update_vm_state(vm_states, allocated_vm):

24. vm_states[allocated_vm] = 'BUSY'

25. vm_states, history_matrix = initialize_states()

26. user_requests = ['Request1', 'Request2', 'Request3', ...]

27. for request in user_requests:

28. round_robin_load_distribution(vm_states,

history_matrix, request)

In the above Algorithm-1, the workflow for RR Algorithm is

presented. This pseudocode illustrates a load balancing

mechanism in a cloud-fog system that uses Round Robin to

assign user requests to virtual machines (VMs). The round

robin load distribution function looks for any open virtual

machine (VM) entries that match the current user request. If

a VM is found, it assigns it to the user's request; if not, a VM

is chosen using round robin. The history matrix and the VM

state list are updated appropriately by the algorithm.

B. Throttled Algorithm

The first step in the Throttled algorithm is to see if the index

of the virtual machines table is available. The Data Center

(DC) controller gets the call when a new request comes in and

handles it to determine which virtual machine should be

allocated next. Virtual machine allocations are updated

dynamically in response to recognized requests. The VM IDs

are communicated to the DC controller for verification, and

the load balancer receives the data for VM allocation. To

improve operational efficiency, the load balancer takes on the

duty of keeping an exhaustive index of all virtual machines

(VMs) and their corresponding statuses [9]. When a new

request comes in, the DC controller looks to the balancer for

advice on which virtual machine (VM) would be most suited

to fulfill it. At first, all VMs are in a state of readiness. After

finding the right virtual machine (VM), the balancer assigns

the VM ID to the DC controller by searching the pre-

established index [10]. The DC controller then sends the

request to the assigned virtual machine (VM), notifies the

balancer to make the necessary updates to the index table, and

waits for the VM's response. The DC controller receives a

response from the VM when it has finished processing the

request, and the Throttled VM load balancer is informed of

the modifications to update the index values [10].

Algorithm-2: Workflow of the Throttled Algorithm

1. def initialize_vm_states():

2. % Set VM state list's VM table index and status to

VACANT

3. vm_states = {'VM1': {'index': -1, 'status': 'VACANT'},

 'VM2': {'index': -1, 'status': 'VACANT'},

 'VM3': {'index': -1, 'status': 'VACANT'}, ...}

4. return vm_states

5. def throttled_load_balancing(vm_states, dcc_request):

6. fresh_call = dcc_request

7. % Check VM availability and start load balancing if

VM equals 1

8. if len([vm for vm in vm_states.values() if vm['status']

== 'VACANT']) == 1:

9. available_vm = next(vm for vm, state in

vm_states.items() if state['status'] == 'VACANT')

10. vm_states[available_vm]['index'] = fresh_call

11. vm_states[available_vm]['status'] = 'BUSY'

12. vm_id = available_vm

13. dcc_notify_allocated_vm(vm_id, dcc_request)

14. dcc_notify_load_balancer(vm_states, dcc_request)

15. else:

16. vm_id = -1

17. dcc_notify_load_balancer(vm_states, dcc_request)

18. return vm_id

19. def dcc_notify_load_balancer(vm_states, dcc_request):

20. pass

21. def dcc_notify_allocated_vm(vm_id, dcc_request):

22. pass

23. vm_states = initialize_vm_states()

24. dcc_requests = ['Request1', 'Request2', 'Request3', ...]

25. for request in dcc_requests:

26. vm_id = throttled_load_balancing(vm_states, request)

27. print(f'Allocated VM for {request}: {vm_id}')

In Algorithm-2, the pseudocode for the TA algorithm is

presented. This pseudocode illustrates how a cloud-fog

system's load balancing algorithm uses throttled to assign

user requests to virtual machines (VMs). If just one virtual

machine (VM) is available, the throttled_load_balancing

function initiates load balancing. It allocates the virtual

machine (VM) to the user request if it is accessible; if not, it

returns -1. The VM state list is updated appropriately by the

method.

C. Particle Swarm Optimization Algorithm

To improve system performance, a load balancing

technique for Cloud-Fog systems based on Particle Swarm

Optimization (PSO) is suggested. The algorithm's goal is to

optimize the distribution of computational workloads

among fog nodes. This program iteratively creates a

population of particles, each of which represents a possible

load balancing setup. Each particle's position indicates a

solution in the solution space, which corresponds to the

characteristics of load and processing time. Particles

dynamically modify their placements through iterative

optimization, taking into account both the collective

knowledge acquired from the swarm's optimal solution and

their own past performance. The equilibrium between

individual experience and collective behavior is governed

by the cognitive and social coefficients, or c1 and c2, which

make it easier to explore and utilize the solution space. The

system load and processing time are reduced as the

algorithm converges to an ideal load balancing choice. This

method effectively solves load balancing in Cloud-Fog

situations by utilizing PSO's built-in capacity to find global

optima and adjust to dynamic changes.

Algorithm-3: Workflow of proposed PSO-based load

balancing

1. PSO_Load_Balancing()

2. num_particles = 100

3. num_dimensions = 2

4. c1 = 1.5

5. c2 = 1.5

6. max_iterations = 50

7. particles = initialize_particles(num_particles,

num_dimensions)

8. global_best_position = None

9. global_best_fitness = float('inf')

10. for iteration in range(max_iterations):

11. for particle in particles:

12. fitness = evaluate_fitness(particle)

13. if fitness < particle['personal_best_fitness']:

14. particle['personal_best_fitness'] = fitness

15. particle['personal_best_position'] =

particle['position']

16. if fitness < global_best_fitness:

17. global_best_fitness = fitness

18. global_best_position = particle['position']

19. update_particles(particles, global_best_position,

c1, c2)

20. final_load_balancing_decision =

global_best_position

21. def initialize_particles(num_particles,

num_dimensions):

22. particles = []

23. for _ in range(num_particles):

24. particle = {position':

generate_random_position(num_dimensions),

'velocity':

generate_random_velocity(num_dimensions),

 'personal_best_position': None,

 'personal_best_fitness': float('inf')

 }

25. particles.append(particle)

26. return particles

27. def generate_random_position(num_dimensions):

28. pass

29. def generate_random_velocity(num_dimensions):

30. pass

31. def evaluate_fitness(particle):

32. pass

33. def update_particles(particles,

global_best_position, c1, c2):

34. pass

35. exit

IV. PERFORMANCE EVALUATION

A. Average Response Time

In order to manage the computing resources in resource

constrained Fog-based computing platforms and for

facilitating load balancing, the performance evaluation

strategy for the proposed simulation environment has been

presented [18-21]. The tasks corresponding to the fog layer

correspond to some service demand made by a fog service-

user viz., a remote mobile user, Internet users, or some web-

based client at any given point in time. Here, the incoming

requests to the fog layer i.e., the tasks are represented as it

where 1, 2, ,i n defines the tasks to be scheduled at the

fog node by exploring the cloud resources. The present study

investigates some well-known techniques like the RR

algorithm, Throttled algorithm, and ESCE algorithm to

facilitate scheduling of the tasks generated at the fog nodes

and for load balancing in the resource constrained fog

computing devices. After completion of the task scheduling

at fog nodes, the performance corresponding to different fog

nodes considered for the analysis is performed. Thus, here the

average response time of the fog nodes can be obtained by

using the following formulation as [20],

_
i

avg response

t
T

N
 (1)

where:

-  = the binary variable which denotes whether a

request is processed by the fog node.

- it = the time delay incurred by input services over

the considered set of computing nodes.

- N =the total number of VMs involved for the

simulation set-up.

B. Average Service Time

The fog nodes are capable of processing the requests

generated by the users locally instead of pushing it to the

cloud data centres and hence incur substantially lower

response time as compared to cloud computing platforms.

Thus, the average service time for a fog node can be given as

[20,21],

 _

fog fog fog

avg service i ij ij ijT p X Y    (2)

where:

-
fog

ip = probability of the fog-user sending the

requests to the fog layer for processing.

- ij = delay incurred for processing and handling the

requests generated between migration from fog node

i to j.

-
fog

ijX = the propagation delay between nodes i to j.

-
fog

ijY = sum of delay incurred at transmission links

between nodes i and j.

V. COST MODEL

The efficiency of a fog-based platform can be analysed by

estimated the costs incurred at each level from the time of

generation of a request at the fog device to its execution. The

cost here refers to the financial cost imposed by the service

provides for processing the tasks at the fog node [18-20].

A. VM Migration Cost

For achieving energy efficiency in constrained fog-based

environments, an important technique is the consolidation of

workloads through appropriate scheduling algorithms for

making optimal usage of the fog-based computing resources.

In this view, the migration of VMs is important for managing

the workloads and for optimal utilization of servers. Thus, the

VM migration cost can be obtained as [21],

_

1

Cos
n

VM migration i

i

t t


 (3)

where:

- it = the tasks at ith fog nodes.

B. Data Transfer Cost

The data transmission cost at the fog nodes can be given as

[21],

 
 _Cos

i

data transmission waiting ijfog

i

S t
t T t

I
 

 (4)

where:

-  iS t = the size of ith tasks at the fog nodes.

-
fog

iI = the index of fog nodes computing the

requests.

-  waiting ijT t = the waiting time of the tasks to be

processed by the fog node.

C. Total Cost

The total cost for executing the requests by the fog layer is

given as the sum of the data transfer cost and the VM

migration cost and can be obtained as below [21],

 
 

1

Cos
n

i

total i waiting ijfog
i i

S t
t t T t

I

  
 (5)

Now by using Eqs.(3) and (4), the expression in Eq.(5) can

be simplified to,

_ _Cos C s Costotal VM migration data transmissiont o t t 
 (6)

VI. SIMULATION RESULTS AND DISCUSSIONS

CloudSim and CloudAnalyst were used to build the

experimental framework for the simulations, which were

used to evaluate the performance of the studied technique in

the context of fog computing [18, 25]. The simulations ran

for sixty minutes and included a range of load balancing and

work scheduling strategies. It is noteworthy that various

service broker policies, including CDC, ORT, and RDL, were

utilized to investigate in detail the effects of various

workloads in the fog computing environment. The method

used the Xen Virtual Machine Monitor (VMM) to obtain

performance data from the CloudAnalyst platform, which has

a processor running at 10000 GHz with 204 GB of RAM and

can execute complicated instruction sets on an x86

architecture. A set pace of 60 requests per user were made;

each request matched a 100-byte piece of data. A request

grouping factor of 10 was defined on the fog nodes,

indicating the maximum number of simultaneous requests

that each fog server could handle at any given time.

A detailed depiction of the comparison study of average

reaction times, expressed in milliseconds, for different

quantities of fog nodes is given in Figure 2. Three different

algorithms are compared in this illustration: the RR, TA, and

the proposed PSO. It has been discovered that in a variety of

fog node modification circumstances, the Proposed PSO

consistently performs better than the benchmark techniques,

RR and TA. The graph effectively demonstrates the PSO

algorithm's superior efficiency in reducing average reaction

times, confirming its effectiveness in improving the Cloud-

Fog system's responsiveness. The PSO algorithm is a good

option for load balancing in this distributed computing

environment because of its strong flexibility and optimization

skills, as evidenced by the declining trend in response times

for the algorithm with an increase in fog nodes.

Figure 2. Comparison of average response time in

milliseconds for varying number of fog nodes corresponding
to Proposed PSO, RR, and TA algorithms.

Figure 3 compares the costs of virtual machine migration for
varying numbers of fog nodes and shows the proposed PSO,
RR, and TA. The PSO algorithm consistently performs better
than RR and TA, demonstrating its efficient optimization
skills in reducing the expenses associated with virtual machine
migration as the number of fog nodes increases.

Figure 3. Comparison of VM migration cost for varying
number of fog nodes corresponding to Proposed PSO, RR, and
TA algorithms.

The comparison of data transfer costs with different numbers
of fog nodes, including the proposed PSO, RR, and TA, is
shown in Figure 4. As the number of fog nodes rises, the
representation amply illustrates the PSO algorithm's superior
performance and shows how effective it is in minimizing data
transfer costs as compared to the benchmark techniques (RR
and TA).

Figure 4. Comparison of data transfer cost for varying
number of fog nodes corresponding to Proposed PSO, RR, and
TA algorithms.

The comparison of total costs using the Proposed PSO, RR,
and TA is shown in Figure 5 for different numbers of fog
nodes. The graphic depiction emphasizes the PSO algorithm's
constant superiority over the benchmark techniques (RR and
TA), highlighting how well it minimizes total costs in a variety
of fog node settings.

Figure 5. Comparison of total cost incurred over varying
number of fog nodes corresponding to Proposed PSO, RR, and
TA algorithms.

VII. CONCLUSIONS AND FUTURE WORK

The present study for facilitating load balancing in Cloud-Fog

systems with the PSO algorithm has produced interesting

findings. The performance results were thoroughly simulated

with different numbers of fog nodes, and important QoS

metrics were examined, such as average response time, VM

migration cost, data transfer cost, and overall cost. The PSO

algorithm's higher effectiveness was brought to light through

a comparative examination with two benchmark load

balancing techniques: RR and the TA algorithm. Across a

range of cases, the PSO continuously showed better

optimization skills than the benchmark methods. The present

study validates PSO as a resilient and flexible load balancing

solution in Cloud-Fog systems, demonstrating its capacity to

improve QoS metrics and make a substantial contribution to

the general dependability and efficiency of distributed

computing environments.

Hybrid optimization techniques represent a viable direction

for future research in the field of load balancing for Cloud-

Fog systems. PSO's advantages can be combined with those

of other nature-inspired algorithms or meta-heuristic

techniques to potentially provide a synergistic solution that

reduces the drawbacks of each method and improves system

performance even more. Furthermore, it could be insightful

to look into how well these hybrid algorithms adapt to

changing and dynamic fog environments where workload

patterns or the number of nodes fluctuate.

REFERENCES

[1] Tripathy SS, Imoize AL, Rath M, Tripathy N, Bebortta S, Lee CC,
Chen TY, Ojo S, Isabona J, Pani SK. A novel edge-computing-based
framework for an intelligent smart healthcare system in smart cities.
Sustainability. 2022 Dec 31;15(1):735.

[2] Ebneyousef S, Shirmarz A. A taxonomy of load balancing algorithms
and approaches in fog computing: a survey. Cluster Computing. 2023
Feb 21:1-22.

[3] Sandhiya B, Canessane RA. An Extensive Study of Scheduling the
Task using Load Balance in Fog Computing. In2023 International
Conference on Sustainable Computing and Data Communication
Systems (ICSCDS) 2023 Mar 23 (pp. 1586-1593). IEEE.

[4] Tripathy SS, Rath M, Tripathy N, Roy DS, Francis JS, Bebortta S. An
Intelligent Health Care System in Fog Platform with Optimized
Performance. Sustainability. 2023 Jan 18;15(3):1862.

[5] Bebortta S, Tripathy SS, Basheer S, Chowdhary CL. DeepMist:
Towards Deep Learning Assisted Mist Computing Framework for
Managing Healthcare Big Data. IEEE Access. 2023 Apr 11.

[6] Bebortta S, Tripathy SS, Basheer S, Chowdhary CL. FedEHR: A
Federated Learning Approach towards the Prediction of Heart Diseases
in IoT-Based Electronic Health Records. Diagnostics. 2023 Oct
10;13(20):3166.

[7] Bebortta S, Tripathy SS, Modibbo UM, Ali I. An optimal fog-cloud
offloading framework for big data optimization in heterogeneous IoT
networks. Decision Analytics Journal. 2023 Sep 1;8:100295.

[8] Zahoor, S., Javaid, N., Khan, A., Ruqia, B., Muhammad, F.J., Zahid,
M.: A cloudfog-based smart grid model for efficient resource
utilization, 04 2018

[9] Fatima, I.,Javid, N.,Iqbal,M.N.,Shafi,I.,Anjum,A.,Memon,U.;,
"Integration of cloud and fog based environment for effective resource
distribution in smart buildings," In:14th IEEE International Wireless
Communications and Mobile Computing Conference(IWCMC-2018),
2018.

[10] Lu, K., Yahyapour, R., Wieder, P., Yaqub, E., Abdullah, M., Schloer,
B., Kotsokalis, C., " Fault-tolerant service level agreement lifecycle
management in clouds using actor system," Future generation.
Computer system, 2016.

[11] Kaur, Paramjeet., "”A Comparison of Popular Heuristics for Load
Balancing in Cloud Computing.”," 2018.

[12] Khalid, S.: Applied Computational Intelligence and Soft Computing in
Engineering. IGI Global, Hershey (2017)

[13] Mandeep Kaur, Rajni Aron, "Equal Distribution Based Load balacing
techniques for fog based cloud computing".

[14] Meftah A, Youssef AE, Zakariah M, " Effect of service broker policies
and load balancing on the performance of large scale internet
applications in cloud data centers," , 2018.

[15] Verma S, Yadav AK, Motwani D, Raw RS, Singh HK, "An efficient
data replication and load balancing technique for fog computing
environment.," 3rd international conference on computing for
sustainable global development (INDIACom)., 2016.

[16] S. Pandey, "cloud load balancing a perspective study," "International
journal of engineering and computer science", 2017.

