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Abstract—In this work, a Particle Swarm Optimization 

(PSO)-based method for load balancing in cloud-fog systems is 

presented, which tackles the dynamic and distributed settings' 

resource management issues. Effective load balancing 

techniques are required due to the complex interactions between 

fog and cloud computing in order to maximize resource usage 

and improve system performance. In order to reduce processing 

delays and boost overall system performance, the suggested 

PSO-based load balancing architecture makes use of the swarm 

intelligence concept to dynamically distribute jobs among fog 

nodes and the cloud. The efficiency of the PSO algorithm in 

reaching load equilibrium is shown by comprehensive 

simulations and performance assessments, highlighting its 

flexibility to changing workloads. Comparing the PSO-based 

load balancing strategy to conventional methods, the results 

show a considerable improvement in response times and 

resource utilization. Moreover, the PSO algorithm's distributed 

structure and scalability make it ideal for cloud-fog systems, 

where centralized management might not be feasible. This study 

adds to the current conversation on maximizing the benefits of 

fog and cloud computing in concert and provides a workable 

answer to load balancing problems in dynamic, heterogeneous 

environments. 

Keywords—Load balancing, Cloud Computing, Fog 

Computing, Nature-Inspired Optimization, Optimal Resource 

Utilization 

I. INTRODUCTION 

Several intelligent systems have emerged as a result of the 
Internet of Things (IoT), which is powered by the smooth 
gathering of environmental data via sensors and actuators. 
IoT-enabled devices include everything from watches, 
computers, and cellphones to bigger equipment like 
refrigerators and washing machines, as well as whole houses 
and vehicles. These gadgets produce data on the energy they 
use and consume, separating private information that is only 
available to the user from public information that controls the 
amount of electricity used overall. For example, a homeowner 
can monitor the energy use of particular appliances, such as 
TVs, refrigerators, fans, and air conditioners, by accessing 
private data. 

Smart devices that rely on the IoT face difficulties with 
storage, network capacity, and latency—complexities that 
cloud computing may not be able to resolve on its own. 

Therefore, fog computing has been introduced to supplement 
cloud servers in order to overcome these issues. This becomes 
more important when it comes to load balancing in cloud-fog 
environments, because the way computational activities are 
divided across cloud and fog nodes is critical to maximizing 
system responsiveness and efficiency. 

A. Cloud Computing 

The cloud environment is a dynamic computing environment 

made up of physical machines (PM) and virtual machines 

(VM), providing customers with optimal use of 

computational and storage resources. In today's world, the 

smart grid appears as a driver of both economic and 

environmental advantages, using digital marketing and 

monitoring to reduce power costs in smart cities and 

communities. The rising demand for energy has fueled cloud 

computing's rise in popularity, especially in major industries 

where it effectively satisfies customer needs and requests.  

In order to optimize the complexity of cloud operations, fog 

computing deliberately interjects services between end nodes 

and cloud servers. This becomes especially important when 

it comes to load balancing in Cloud-Fog situations, where 

efficiency is improved by the inclusion of game theory. As a 

model for providing internet-based services that include 

servers, databases, storage, and software, cloud computing is 

a fundamental component of modern technology. Even with 

its quick uptake, problems like traffic jams occur when 

several clients seek resources at once. 'CISCO's' introduction 

of the fog concept in 2014 is an attempt to address these 

constraints and enable more effective load balancing within 

the Cloud-Fog environment. 

B. Fog Computing 

By serving as an intermediary between customers and the 

cloud, fog computing intentionally lowers latency and 

storage needs in comparison to more extensive cloud 

infrastructure. Because of this feature, fog is a preferred 

alternative for a lot of customers, which encourages 

individual fog adoption within societies to improve 

performance and dependability. Clients use cloud and fog 

environments to accomplish numerous tasks using virtual and 

physical devices. Fog computing is used to minimize latency 

and speed up customer requests. 
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The extant literature utilizes diverse service broker policies 

and load balancing methods to maximize cloud and fog 

system performance while concurrently reducing 

computational expenses. Importantly, load balancing 

algorithms heavily rely on service broker policies like RDL 

(Reconfigure Dynamically with Load), ORT (Optimize RT), 

and CDC (Closet Data Center). This framework's main goals 

are to speed up response times and make sure the cloud server 

is under a balanced load. This focus on load balancing is 

especially important in the developing Cloud-Fog 

environment, where the best possible system performance 

depends on the effective distribution of computational 

activities across fog and cloud resources. 

 
Figure 1. The overview architecture for IoT-Fog-Cloud 

infrastructure. 

C. Motivations 

Fog functions as an intermediary stratum synergizing with the 

cloud to ameliorate load and processing time dynamics. The 

intricate Fog environment necessitates the integration of 

sophisticated load balancing algorithms, including nature-

inspired techniques like Particle Swarm Optimization (PSO), 

Ant Colony Optimization (ACO), and Genetic Algorithms 

(GA), along with diverse service broker policies. This 

research is distinctly focused on deploying fog computing 

within community networks, emphasizing its pivotal role in 

addressing load and processing time challenges. The core 

motivation lies in the exploration and implementation of 

nature-inspired load balancing algorithms, such as PSO, 

ACO, and GA, to adeptly manage and optimize the load on 

the cloud server within the Cloud-Fog environment. 

D. Contributions 

The fundamental contributions of this article are outlined as 

below: 

 In order to effectively distribute computational 

workloads and maximize resource usage inside 

Cloud-Fog systems, the study presents and 

implements the PSO-based load balancing 

algorithm, a nature-inspired load balancing 

technique. 

 The research endeavors to optimize system 

efficiency by employing the PSO algorithm to 

dynamically manage workloads between fog nodes 

and the cloud, ultimately reducing processing delays 

and boosting overall performance. 

 The study makes a contribution by concentrating on 

the implementation of fog computing in community 

networks, demonstrating the usefulness of PSO-

based load balancing in actual situations, especially 

in settings where community-based cloud-fog 

systems are essential. 

 The main contributions include particular issues 

with load, processing time, response time, and costs 

in Cloud-Fog systems by utilizing the PSO-based 

load balancing algorithm in conjunction with some 

benchmark load balancing algorithms. 

II. RELATED WORK 

This section deals with a comprehensive survey of some 

state-of-the-art studies which have implemented various load 

balancing algorithms to enhance the QoS of Cloud-Fog 

system. The Cloud Load Balancing (CLB) technique, which 

is intended to efficiently balance the load over the Cloud, is 

introduced by the authors in [1]. The CLB algorithm achieves 

successful load balancing and higher performance as 

compared to other methods. The results of a unique dynamic 

service broker strategy for fog selection are compared with 

those of the RR and Throttled load balancing algorithms in 

[1]. A new Service Broker Policy for load balancing is 

introduced in [2], and because of the policy's effective 

resource selection (PT), response times (RT) and processing 

times are shortened. Different approaches to load-balancing 

are examined in [3], where RR, throttled, and evenly dispersed 

current execution are contrasted. According to the study's 

findings, RR produces better results in their particular 

situation. 

In [7], the authors use the Ant Colony System (MORA-ACS) 

to address the problem of effective resource allocation. 

Analytical comparisons with the RR algorithm for Energy 

Consumption, Processing Time (PT), and standard deviation 

show that the suggested algorithm achieves two goals: 

reducing energy use and guaranteeing a balanced load in the 

cloud. The work conducted by the authors in [4] uses 

algorithms like honeybee, throttled, RR, and equally dispersed 

current execution to offer a quantitative evaluation of load 

balancing strategies. According to simulation results, through 

processing time reduction and resource optimization, the 

equally dispersed current execution load balancing technique 

improves customer satisfaction. In order to reduce the 

workload for consumers, the article [5] presents a three-layer 

architecture that uses techniques such round-robin, throttled 

load balancing, and shortest remaining time first, which are 

selected in accordance with the broker policy and Closest Data 

Center Service (CDCS). In order to mitigate VM overloads 

brought on by intense IoT queries, load balancing at the fog 

layer is crucial, as discussed in [6], which tackles the growing 

user demand. By distributing the workload equally among all 

VMs, load balancing solutions at the fog layer effectively 

shorten response times. 

To optimize load balancing in Cloud-Fog systems, a number 

of techniques have been put forth and evaluated. Especially in 

terms of allocating resources, accomplishing the twin goals of 

reducing energy usage and guaranteeing a steady load on the 

cloud. But among these options, the Particle Swarm 

Optimization (PSO) method is the most promising one for 

Cloud-Fog systems load balancing. Although the 

aforementioned algorithms have their advantages, the PSO 



algorithm stands out for its exceptional ability to effectively 

handle computational tasks, maximize resource utilization, 

and guarantee a fair workload distribution. As such, it is a 

worthy candidate to handle the complexities of load balancing 

in the Cloud-Fog environment. 

III. PROPOSED FRAMEWORK 

A number of Load Balancing (LB) algorithms that are 
used to control energy consumption and maximize resource 
usage are covered in this section. The three LB algorithms in 
Cloud Analyst—Round Robin (RR), Throttled, and Particle 
Swarm Optimization (PSO)—are thoroughly described in this 
article. To reduce Response Time (RT) for requests, 
Processing Time (PT) for data and transmission, and energy 
costs related to Cloud-Fog offloading and data transfer from 
service providers to customers, these algorithms are 
strategically used in the context of Cloud-Fog systems. 

A. Round Robin Algorithm 

The Round Robin (RR) algorithm is implemented for 

resource utilization on every host within the Cloud-Fog 

system. This algorithm is specifically employed for load 

balancing virtual machines, where, in the RR model, the data 

center controller selects a virtual machine randomly from the 

system panel after the initiation of the first request to fulfill 

the request. Subsequently, the DC controller continues to 

choose virtual machines randomly to address pending 

requests, with the selected virtual machine automatically 

being assigned to the top of the system panel. However, in 

scenarios with high traffic requests, the system experiences 

the drawback of nodes becoming overloaded, leading some 

nodes to go out of service and negatively impacting the 

overall system functionality [8]. 

 

Algorithm-1: Workflow for RR algorithm 

1. def initialize_states(): 

2. % Set all VM states to VACANT 

3. vm_states = {'VM1': 'VACANT', 'VM2': 'VACANT', 

'VM3': 'VACANT', ...} 

4. %Initialize the history matrix 

5. history_matrix = [] 

6. return vm_states, history_matrix 

7. def round_robin_load_distribution(vm_states, 

history_matrix, user_request): 

8. vacant_vm = None 

9. for vm, state in vm_states.items(): 

10. if state == 'VACANT' and is_comparable(vm, 

user_request): 

a. vacant_vm = vm 

b. break 

11. if vacant_vm is None 

12.         vacant_vm = round_robin_selection(vm_states) 

13.     update_history_matrix(history_matrix, user_request, 

vacant_vm) 

14.     update_vm_state(vm_states, vacant_vm) 

15. def is_comparable(vm, user_request): 

16.     return True 

17. def round_robin_selection(vm_states): 

18.         for vm in vm_states: 

19.         if vm_states[vm] == 'VACANT': 

20.             return vm 

21. def update_history_matrix(history_matrix, user_request, 

vm): 

22.     history_matrix.append({'user_request': user_request, 

'allocated_vm': vm}) 

23. def update_vm_state(vm_states, allocated_vm): 

24.       vm_states[allocated_vm] = 'BUSY' 

25.       vm_states, history_matrix = initialize_states() 

26. user_requests = ['Request1', 'Request2', 'Request3', ...] 

27. for request in user_requests: 

28.     round_robin_load_distribution(vm_states, 

history_matrix, request) 

 

In the above Algorithm-1, the workflow for RR Algorithm is 

presented. This pseudocode illustrates a load balancing 

mechanism in a cloud-fog system that uses Round Robin to 

assign user requests to virtual machines (VMs). The round 

robin load distribution function looks for any open virtual 

machine (VM) entries that match the current user request. If 

a VM is found, it assigns it to the user's request; if not, a VM 

is chosen using round robin. The history matrix and the VM 

state list are updated appropriately by the algorithm. 

B. Throttled Algorithm 

The first step in the Throttled algorithm is to see if the index 

of the virtual machines table is available. The Data Center 

(DC) controller gets the call when a new request comes in and 

handles it to determine which virtual machine should be 

allocated next. Virtual machine allocations are updated 

dynamically in response to recognized requests. The VM IDs 

are communicated to the DC controller for verification, and 

the load balancer receives the data for VM allocation. To 

improve operational efficiency, the load balancer takes on the 

duty of keeping an exhaustive index of all virtual machines 

(VMs) and their corresponding statuses [9]. When a new 

request comes in, the DC controller looks to the balancer for 

advice on which virtual machine (VM) would be most suited 

to fulfill it. At first, all VMs are in a state of readiness. After 

finding the right virtual machine (VM), the balancer assigns 

the VM ID to the DC controller by searching the pre-

established index [10]. The DC controller then sends the 

request to the assigned virtual machine (VM), notifies the 

balancer to make the necessary updates to the index table, and 

waits for the VM's response. The DC controller receives a 

response from the VM when it has finished processing the 

request, and the Throttled VM load balancer is informed of 

the modifications to update the index values [10]. 

 

Algorithm-2: Workflow of the Throttled Algorithm 

 

1. def initialize_vm_states(): 

2. % Set VM state list's VM table index and status to 

VACANT 

3.     vm_states = {'VM1': {'index': -1, 'status': 'VACANT'}, 

                 'VM2': {'index': -1, 'status': 'VACANT'}, 

                 'VM3': {'index': -1, 'status': 'VACANT'}, ...} 

4. return vm_states 

5. def throttled_load_balancing(vm_states, dcc_request): 

6.     fresh_call = dcc_request 

7.     % Check VM availability and start load balancing if 

VM equals 1 

8.     if len([vm for vm in vm_states.values() if vm['status'] 

== 'VACANT']) == 1: 



9.         available_vm = next(vm for vm, state in 

vm_states.items() if state['status'] == 'VACANT') 

10.         vm_states[available_vm]['index'] = fresh_call 

11.         vm_states[available_vm]['status'] = 'BUSY' 

12.         vm_id = available_vm 

13.         dcc_notify_allocated_vm(vm_id, dcc_request) 

14.         dcc_notify_load_balancer(vm_states, dcc_request) 

15.     else: 

16.         vm_id = -1 

17.         dcc_notify_load_balancer(vm_states, dcc_request) 

18.     return vm_id 

19. def dcc_notify_load_balancer(vm_states, dcc_request): 

20.     pass 

21. def dcc_notify_allocated_vm(vm_id, dcc_request): 

22.     pass 

23. vm_states = initialize_vm_states() 

24. dcc_requests = ['Request1', 'Request2', 'Request3', ...] 

25. for request in dcc_requests: 

26.     vm_id = throttled_load_balancing(vm_states, request) 

27.     print(f'Allocated VM for {request}: {vm_id}') 

 

In Algorithm-2, the pseudocode for the TA algorithm is 

presented. This pseudocode illustrates how a cloud-fog 

system's load balancing algorithm uses throttled to assign 

user requests to virtual machines (VMs). If just one virtual 

machine (VM) is available, the throttled_load_balancing 

function initiates load balancing. It allocates the virtual 

machine (VM) to the user request if it is accessible; if not, it 

returns -1. The VM state list is updated appropriately by the 

method. 

 

C. Particle Swarm Optimization Algorithm 

 

To improve system performance, a load balancing 

technique for Cloud-Fog systems based on Particle Swarm 

Optimization (PSO) is suggested. The algorithm's goal is to 

optimize the distribution of computational workloads 

among fog nodes. This program iteratively creates a 

population of particles, each of which represents a possible 

load balancing setup. Each particle's position indicates a 

solution in the solution space, which corresponds to the 

characteristics of load and processing time. Particles 

dynamically modify their placements through iterative 

optimization, taking into account both the collective 

knowledge acquired from the swarm's optimal solution and 

their own past performance. The equilibrium between 

individual experience and collective behavior is governed 

by the cognitive and social coefficients, or c1 and c2, which 

make it easier to explore and utilize the solution space. The 

system load and processing time are reduced as the 

algorithm converges to an ideal load balancing choice. This 

method effectively solves load balancing in Cloud-Fog 

situations by utilizing PSO's built-in capacity to find global 

optima and adjust to dynamic changes. 

 

Algorithm-3: Workflow of proposed PSO-based load 

balancing 

1. PSO_Load_Balancing() 

2. num_particles = 100 

3. num_dimensions = 2   

4. c1 = 1.5    

5. c2 = 1.5   

6. max_iterations = 50 

7. particles = initialize_particles(num_particles, 

num_dimensions) 

8. global_best_position = None 

9. global_best_fitness = float('inf') 

10. for iteration in range(max_iterations): 

11.     for particle in particles: 

12.         fitness = evaluate_fitness(particle) 

13.         if fitness < particle['personal_best_fitness']: 

14.             particle['personal_best_fitness'] = fitness 

15.             particle['personal_best_position'] = 

particle['position'] 

16.         if fitness < global_best_fitness: 

17.             global_best_fitness = fitness 

18.             global_best_position = particle['position'] 

19.     update_particles(particles, global_best_position, 

c1, c2) 

20. final_load_balancing_decision = 

global_best_position 

21. def initialize_particles(num_particles, 

num_dimensions): 

22.     particles = [] 

23.     for _ in range(num_particles): 

24.         particle = {position': 

generate_random_position(num_dimensions), 

'velocity':   

generate_random_velocity(num_dimensions), 

            'personal_best_position': None, 

            'personal_best_fitness': float('inf') 

        } 

25.         particles.append(particle) 

26.     return particles 

27. def generate_random_position(num_dimensions): 

28.    pass 

29. def generate_random_velocity(num_dimensions): 

30.     pass 

31. def evaluate_fitness(particle): 

32.     pass 

33. def update_particles(particles, 

global_best_position, c1, c2): 

34.     pass 

35. exit 

 

IV. PERFORMANCE EVALUATION 

A. Average Response Time 

In order to manage the computing resources in resource 

constrained Fog-based computing platforms and for 

facilitating load balancing, the performance evaluation 

strategy for the proposed simulation environment has been 

presented [18-21]. The tasks corresponding to the fog layer 

correspond to some service demand made by a fog service-

user viz., a remote mobile user, Internet users, or some web-

based client at any given point in time. Here, the incoming 

requests to the fog layer i.e., the tasks are represented as it

where 1, 2, ,i n  defines the tasks to be scheduled at the 

fog node by exploring the cloud resources. The present study 

investigates some well-known techniques like the RR 

algorithm, Throttled algorithm, and ESCE algorithm to 



facilitate scheduling of the tasks generated at the fog nodes 

and for load balancing in the resource constrained fog 

computing devices. After completion of the task scheduling 

at fog nodes, the performance corresponding to different fog 

nodes considered for the analysis is performed. Thus, here the 

average response time of the fog nodes can be obtained by 

using the following formulation as [20], 

_
i

avg response

t
T

N
                  (1) 

where: 

-  = the binary variable which denotes whether a 

request is processed by the fog node. 

- it = the time delay incurred by input services over 

the considered set of computing nodes. 

- N =the total number of VMs involved for the 

simulation set-up. 

B. Average Service Time 

The fog nodes are capable of processing the requests 

generated by the users locally instead of pushing it to the 

cloud data centres and hence incur substantially lower 

response time as compared to cloud computing platforms. 

Thus, the average service time for a fog node can be given as 

[20,21], 

 _

fog fog fog

avg service i ij ij ijT p X Y     (2) 

where: 

- 
fog

ip = probability of the fog-user sending the 

requests to the fog layer for processing. 

- ij = delay incurred for processing and handling the 

requests generated between migration from fog node 

i to j. 

- 
fog

ijX = the propagation delay between nodes i to j. 

- 
fog

ijY = sum of delay incurred at transmission links 

between nodes i and j. 

V. COST MODEL 

The efficiency of a fog-based platform can be analysed by 

estimated the costs incurred at each level from the time of 

generation of a request at the fog device to its execution. The 

cost here refers to the financial cost imposed by the service 

provides for processing the tasks at the fog node [18-20]. 

A. VM Migration Cost 

For achieving energy efficiency in constrained fog-based 

environments, an important technique is the consolidation of 

workloads through appropriate scheduling algorithms for 

making optimal usage of the fog-based computing resources. 

In this view, the migration of VMs is important for managing 

the workloads and for optimal utilization of servers. Thus, the 

VM migration cost can be obtained as [21], 

_

1

Cos
n

VM migration i

i

t t


                   (3) 

where: 

- it = the tasks at ith fog nodes. 

B. Data Transfer Cost 

The data transmission cost at the fog nodes can be given as 

[21], 

 
 _Cos

i

data transmission waiting ijfog

i

S t
t T t

I
 

                  (4) 

where: 

-  iS t = the size of ith tasks at the fog nodes. 

- 
fog

iI = the index of fog nodes computing the 

requests. 

-  waiting ijT t = the waiting time of the tasks to be 

processed by the fog node. 

C. Total Cost 

The total cost for executing the requests by the fog layer is 

given as the sum of the data transfer cost and the VM 

migration cost and can be obtained as below [21], 

 
 

1

Cos
n

i

total i waiting ijfog
i i

S t
t t T t

I

  
                      (5) 

Now by using Eqs.(3) and (4), the expression in Eq.(5) can 

be simplified to, 

_ _Cos C s Costotal VM migration data transmissiont o t t 
    (6) 

VI. SIMULATION RESULTS AND DISCUSSIONS 

CloudSim and CloudAnalyst were used to build the 

experimental framework for the simulations, which were 

used to evaluate the performance of the studied technique in 

the context of fog computing [18, 25]. The simulations ran 

for sixty minutes and included a range of load balancing and 

work scheduling strategies. It is noteworthy that various 

service broker policies, including CDC, ORT, and RDL, were 

utilized to investigate in detail the effects of various 

workloads in the fog computing environment. The method 

used the Xen Virtual Machine Monitor (VMM) to obtain 

performance data from the CloudAnalyst platform, which has 

a processor running at 10000 GHz with 204 GB of RAM and 

can execute complicated instruction sets on an x86 

architecture. A set pace of 60 requests per user were made; 

each request matched a 100-byte piece of data. A request 

grouping factor of 10 was defined on the fog nodes, 

indicating the maximum number of simultaneous requests 

that each fog server could handle at any given time. 

A detailed depiction of the comparison study of average 

reaction times, expressed in milliseconds, for different 

quantities of fog nodes is given in Figure 2. Three different 

algorithms are compared in this illustration: the RR, TA, and 

the proposed PSO. It has been discovered that in a variety of 

fog node modification circumstances, the Proposed PSO 

consistently performs better than the benchmark techniques, 

RR and TA. The graph effectively demonstrates the PSO 

algorithm's superior efficiency in reducing average reaction 

times, confirming its effectiveness in improving the Cloud-

Fog system's responsiveness. The PSO algorithm is a good 

option for load balancing in this distributed computing 

environment because of its strong flexibility and optimization 

skills, as evidenced by the declining trend in response times 

for the algorithm with an increase in fog nodes. 



 

 
Figure 2. Comparison of average response time in 

milliseconds for varying number of fog nodes corresponding 
to Proposed PSO, RR, and TA algorithms. 

Figure 3 compares the costs of virtual machine migration for 
varying numbers of fog nodes and shows the proposed PSO, 
RR, and TA. The PSO algorithm consistently performs better 
than RR and TA, demonstrating its efficient optimization 
skills in reducing the expenses associated with virtual machine 
migration as the number of fog nodes increases. 

 

Figure 3. Comparison of VM migration cost for varying 
number of fog nodes corresponding to Proposed PSO, RR, and 
TA algorithms. 

The comparison of data transfer costs with different numbers 
of fog nodes, including the proposed PSO, RR, and TA, is 
shown in Figure 4. As the number of fog nodes rises, the 
representation amply illustrates the PSO algorithm's superior 
performance and shows how effective it is in minimizing data 
transfer costs as compared to the benchmark techniques (RR 
and TA). 

 

Figure 4. Comparison of data transfer cost for varying 
number of fog nodes corresponding to Proposed PSO, RR, and 
TA algorithms. 

The comparison of total costs using the Proposed PSO, RR, 
and TA is shown in Figure 5 for different numbers of fog 
nodes. The graphic depiction emphasizes the PSO algorithm's 
constant superiority over the benchmark techniques (RR and 
TA), highlighting how well it minimizes total costs in a variety 
of fog node settings. 

Figure 5. Comparison of total cost incurred over varying 
number of fog nodes corresponding to Proposed PSO, RR, and 
TA algorithms. 

VII. CONCLUSIONS AND FUTURE WORK 

The present study for facilitating load balancing in Cloud-Fog 

systems with the PSO algorithm has produced interesting 

findings. The performance results were thoroughly simulated 

with different numbers of fog nodes, and important QoS 

metrics were examined, such as average response time, VM 

migration cost, data transfer cost, and overall cost. The PSO 

algorithm's higher effectiveness was brought to light through 

a comparative examination with two benchmark load 

balancing techniques: RR and the TA algorithm. Across a 

range of cases, the PSO continuously showed better 

optimization skills than the benchmark methods. The present 

study validates PSO as a resilient and flexible load balancing 

solution in Cloud-Fog systems, demonstrating its capacity to 

improve QoS metrics and make a substantial contribution to 

the general dependability and efficiency of distributed 

computing environments. 

Hybrid optimization techniques represent a viable direction 

for future research in the field of load balancing for Cloud-

Fog systems. PSO's advantages can be combined with those 

of other nature-inspired algorithms or meta-heuristic 

techniques to potentially provide a synergistic solution that 

reduces the drawbacks of each method and improves system 

performance even more. Furthermore, it could be insightful 

to look into how well these hybrid algorithms adapt to 

changing and dynamic fog environments where workload 

patterns or the number of nodes fluctuate. 
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